Equivariant Normal Form for Nondegenerate Singular Orbits of Integrable Hamiltonian Systems

نویسندگان

  • EVA MIRANDA
  • Henri Mineur
چکیده

We consider an integrable Hamiltonian system with n-degrees of freedom whose first integrals are invariant under the symplectic action of a compact Lie group G. We prove that the singular Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in a Gequivariant way, to the linearized foliation in a neighborhood of a compact singular non-degenerate orbit. We also show that the non-degeneracy condition is not equivalent to the non-resonance condition for smooth systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Normal Form for Nondegenerate Singular Orbits of Integrable Hamiltonian Systems Formes Normales Équivariantes Pour Les Orbites Singulières Nondégénérées Des Systèmes Hamiltoniens Intégrables Eva Miranda and Nguyen Tien Zung

We consider an integrable Hamiltonian system with n-degrees of freedom whose first integrals are invariant under the symplectic action of a compact Lie group G. We prove that the singular Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in a Gequivariant way, to the linearized foliation in a neighborhood of a compact singular non-degenerate orbit. We also...

متن کامل

Singular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems∗

This paper describes a new type of orbits homoclinic to resonance bands in a class of near-integrable Hamiltonian systems. It presents a constructive method for establishing whether small conservative perturbations of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria will yield transverse homoclinic connections between periodic orbits in the resonance band r...

متن کامل

Splitting Potential and Poincar E{melnikov Theory for Whiskered Tori in Hamiltonian Systems

We deal with a perturbation of a hyperbolic integrable Hamiltonian system with n + 1 degrees of freedom. The integrable system is assumed to have n-dimensional hyperbolic invariant tori with coincident whiskers (separatrices). Following Eliasson, we use a geometric approach that takes advantage of the Lagrangian properties of the whiskers, to show that the splitting distance between the perturb...

متن کامل

Branches of Stable Three{tori Using Hamiltonian Methods in Hopf Bifurcation on a Rhombic Lattice

This paper uses Hamiltonian methods to nd and determine the stability of some new solution branches for an equivariant Hopf bifurcation on C 4. The normal form has a symmetry group given by the semi-direct product of D2 with T 2 S 1. The Hamiltonian part of the normal form is completely integrable and may be analyzed using a system of invariants. The idea of the paper is to perturb relative equ...

متن کامل

Melnikov Functions for Period Annulus, Nondegenerate Centers, Heteroclinic and Homoclinic Cycles

We give sufficient conditions in terms of the Melnikov functions in order that an analytic or a polynomial differential system in the real plane has a period annulus. We study the first nonzero Melnikov function of the analytic differential systems in the real plane obtained by perturbing a Hamiltonian system having either a nondegenerate center, a heteroclinic cycle, a homoclinic cycle, or thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003